
Pattern Recognition :

The Flagship Problem in Artificial Intelligence



Pattern Recognition - The Prototypical Task

I Numerous applications :
I Handwritten character recognition
I Medical diagnosis support tools
I Credit-scoring, churn analysis
I Speech recognition
I etc.

I Numerous algorithms "off the shelf" (scikit-learn) :
I Linear Discriminant Analysis, naive Bayes
I Decision trees, nearest-neighbours
I (Deep) Neural Networks
I Support Vector Machines
I Boosting
I Random Forests
I etc.

I Concepts and methods will be extended to tackle more
complex problems, e.g. biometrics, recommending systems,
unsupervised anomaly detection



The generic supervised setup

I System is described by a random pair (X ,Y ) ∼ P unknown
probability distribution

I X = input random vector valued in Rd , in general d � 1

I Y = label/output, encoded and valued in Y ∈ R
I The hypothesis : X models useful information for guessing Y

Predictive rule : g : x ∈ Rd 7→ g(x) in some class of programmable
rules - Hopefully, g(X ) ∼ Y for any new pair (X ,Y )

I The accuracy of the guess/decision/prediction is evaluated by a loss
function : ` : Y × Y → R+

I Risk (unknown !) = generalisation error

L(g) = E (`(Y , g(X )))

minimum over g ∈ G ideally.

I Training data (labelled examples) Dn = {(X1,Y1), . . . , (Xn,Yn)}
i.i.d.∼ P, i.e. copies of the generic pair (X ,Y )



First example : handwritten digit recognition

I The input information X ∈ Rd is an array describing a
pixelated image (e.g. d = 640× 480)

I The label Y is a digit : Y = {0, 1, . . . , 9}
I ’0− 1’ loss : `(y , g(x)) = I{y 6= g(x)}
I Database B with many labeled examples are available

(X1,Y1), . . . , (Xn,Yn), n = 60 000

e.g. www.nist.gov



First go : binary labels

I Y = {−1,+1} (pure convention, but useful)
I A simple task covering many situations :

I presence/absence of a certain object in an image X
I state of a system described by physical parameters X : normal

vs abnormal,
I medical diagnosis based on physiological parameters X :

presence/absence of a given pathology
I commercial targeting, etc.

I The predictive rule may take the form of the sign of a real
valued function f (x) : g(x) = sgn(f (x)). The quantity f (x)
ideally indicates confidence

I Binary loss

`(y , g(x)) = I{y 6= g(x)} = I{−y · f (x) < 0}

Weights can be introduced, the two types of error may have a
different impact



The first AI model : artificial neuron

I A mathematical function introduced by McCulloch & Pitts ’43
I Mimics the synaptic transmission of the information to a

biological neuron
I Given the weight vector w , the function is implemented in a

sumplistic fashion :
1. Compute the inner product 〈x ,w〉 = tw · x (multiplications

and summations only)
2. Activate the neuron if the inner product plus a parameter θ is

positive, do not activate it otherwise

g(x) = sgn(〈x ,w〉+ θ)



The first AI model : artificial neuron

I We can collect and store labeled examples
(X1,Y1), . . . , (Xn,Yn)

I We need an algorithm to choose θ and the synaptic weights w ,
so as to reproduce best the examples !

I The first learning algorithm : the Monolayer Perceptron



Learning an artificial neuron model
Frank Rosenblatt (1957)

I A probabilistic/statistical view of AI problems
I Motivation : computer vision for aeronautics
I Exploit ’recent’ advances in optimization (stochastic

approximation for gradient descent, Robbins & Monro ’51)
I Exploit the capacities of ’high-speed’ calculators in the 50’s
I ’On-line’ algorithm



The Algorithm - Geometric ideas
I Goal : learn how to split the input space Rd into two halves,

separated by an affine hyperplane of eq. θ + tw · x = 0

g(x) = sgn(tw · X + θ)

Assign positive label to any input x above the hyperplane and
negative label when x is below it

I Ideally minimize over (w , θ) in R× Rd , the empirical error

1
n

n∑
i=1

I{−Yi (
tw · Xi + θ) > 0}



The Algorithm

I Observe that it is the statistical counterpart of the probability
of error

L(g) = P{Y 6= g(X )}

based on the training data, when g(x) = θ + tw · x
I Main barrier to the optimization of the empirical error :

u 7→ I{u > 0} is not differentiable !

I Surrogate problem : minimize

−
∑
i

Yi (
tw · Xi + θ)

by stochastic gradient descent : (w , θ) 7→ −Y (tw · X + θ) is
differentiable with gradient (YX ,Y )



The Algorithm
I Start with an initial guess for (w , θ)

1. Choose at random a point (Xi ,Yi ) misclassified by the current
rule (if there is any)

2. Change the rule parameters (w , θ) by a step into the opposite
direction of the gradient computed at (Xi ,Yi ) with
rate/stepsize ρ

(
w
θ

)← (
w
θ

) + ρ(
YiXi

Yi
)

I Repeat until there is no misclassified observations anymore...



Once the rule is learned, how well does it work ?
I If (w , θ) has been learned by means of the training dataset

Dn = {(X1,Y1), . . . , (Xn,Yn)}, DO NOT rely on the
training error to evaluate its future performance !

1
n

n∑
i=1

I{−Yi (θ + tw · Xi ) > 0}

I The parameters have been precisely chosen to mimic the
input-output pairs (Xi ,Yi ), the training error is too optimistic
to estimate the true/theoretical risk

P{−Y (θ + tw · X ) > 0}
I If possible, use another dataset {(X ′

1,Y
′
1), . . . , (X ′

n′ ,Y
′
n′)},

independent from Dn (test data) to compute the test error

1
n′

n′∑
i=1

I{−Y ′
i (θ + tw · X ′

i ) > 0},

which is a fair (unbiased) estimate of P{−Y (θ+ tw ·X ) > 0}



Only the beginning of the story...

I Easy (and possibly on-line) implementation, that requires no
sophisticated library

I If the data are linearly separable, it converges in a finite
number of steps

I If not, the hyperplane will oscillate forever...



Only the beginning of the story...
More algorithms are needed !

I Linear Discriminant Analysis, naive Nayes
I Majority vote (local averages) :

nearest neighbours and decision trees
I Linear SVM
I Neural Networks
I Towards more accuracy and/or stability :

ensemble learning, deep NN, nonlinear SVM

Some mathematical/statistical concepts are required to
understand them...



Basics in Probability - The Frequentist Approach

I The simplest probabilistic model : flip a coin...
I The Bernoulli distribution B(θ) : only two possible outcomes

for the r.v. Y , 0 or 1 say
I The distribution of the binary r.v. Y is fully described by the

parameter

θ = P{Y = +1} = 1− P{Y = 0}

I The expectation/mean of a r.v. Y ∼ B(θ) is

E[Y ] = 1× θ + 0× (1− θ) = θ

I Its variability is described by the variance

Var(Y ) = E[(Y − E[Y ])2] = θ(1− θ)



Basics in Probability - The Frequentist Approach

I How to simulate a Bernoulli distribution using a pseudo
random number generator (PRNG) ?

I The PRNG chooses at ’random’ a number U between 0 and
1 : set Y = +1 if U ≤ θ and Y = 0 otherwise

I Flip a coin n ≥ 1 times or, preferably, use the PRNG to
produce ’independent’ outcomes Y1, . . . , Yn

I Test it ! If n is large, the frequency of ones

Ȳn =
1
n

n∑
i=1

Yi

is ’generally’ close to θ = P{Y = +1}



Basics in Probability - The Frequentist Approach
I Law of Large Numbers : as n tends to ∞,

Ȳn → E[Y ] = θ

with probability one
I In other words, the empirical mean gets asymptotically closer

to the true mean
I Central Limit Theorem : convergence occurs at the rate

1/
√
n and the (random) fluctuations of the empirical mean

around its limit is described by a Gaussian distribution : as n
tends to ∞,

√
n(Ȳn − E[Y ])⇒ N (0, θ(1− θ))


